Homological Algebra Seminar Week 3

Mathis Duguin after the talk of Fabien Donnet-Monay and Zichun Zhou

1 Chapter 1: Chain Complexes

We present below the formalism of chain complexes in a general abelian category,
similar to the usual theory of chain complexes for R-modules. We fix throughout
an abelian category A.

Definition 1.1. A chain complex C, in A is a family of objects {Cy }nez
equipped with morphisms d,, : C, — C,_1 (called differentials) such that
dnodpt1 =0Vn €Z.

We define the n-cycles and n-boundaries respectively by Z,(Ce) = ker(d,),
B, (Cy) =im(dp41).

By abuse of notation we will often write the d,, in the above definition as d, so
that the condition d, o d,+1 = 0 becomes d? =0.

Definition 1.2. We say C, is bounded above if AN € Z such that C,, = 0
Vn > N. One similarly defines boundedness below. If C is bounded below by
a and above by b, we say it has amplitude in [a, b]

Definition 1.3. A morphism of chain complexes u, : C,, D, is a collection of
morphisms {u,, : C, = Dy, }nez satisfying appropriate compatibility conditions,
namely such that the following diagram commutes Vn € Z

dn
Cp —— Cp_1

unJ{ J{unfl

Dn T> Dn—l

here we have noted the differentials of C, by d, and those of Dq by 9.
One can easily verify that this defines a category of chain complexes over A,

which we denote by Ch(A).

1.1 Homology

Having defined chain complexes, the next natural step is to define the most
important operation on these: homology functors.



Given a chain complex C4 with differentials d, note that d,,41 : Chy1 — Ch
factors as Ci41 SN im(dn41) =, ¢, for e,m epi and monic respectively. We
thus obtain

0=d,odyt1 =dpomoe = d,om=20

By the universal property of kernels, m thus factors through ker(d,,).
Definition 1.4. Let Cy € Ch(A). The n-th homology of C, is

H,(C,) = coker(im(d,,+1) — ker(d,,))
with the implicit morphism a factor of m as above.

Remark 1.5. H,(C,) =0 iff C is exact at n (this is easy for R-modules, and
one can then use Freyd-Mitchell).

We have yet to show that homology defines a collection of functors.
Proposition 1.6. H, : Ch(A) — A is a functor

Proof. Consider a morphism ue : Co — D,. Denote by d,d the differentials of
C., D, respectively. Let ¢, denote the natural morphisms ¢, : ker(d,) — D,
Vn € Z. Now we have Vn € Z, 6, 0 Uy 0ty = Up—1 ©dp 0ty = 0 so by the
universal property of kernels we get a diagram

ker(d,) —— ker(dy,)

In R-mod, the top map is n|ker(q,) and the diagram can be completed with
a unique induced morphism 6,, : H,(Cs) — H,(D,) down below making the
diagram commute. By Freyd-Mitchell we obtain such a morphism in the general
case. If we thus define H,,(C,) on morphisms by H, (ue) = 0,, it is then easy
to verify functoriality by the uniqueness property of 6,,. 0

Since we will usually be interested in maps preserving homology, it is worth
defining a new notion of isomorphism.

Definition 1.7. A quasi-isomorphism of chain complexes over A is a morphism
of chain complexes over A, uq : Co — D,, such that H,(u,) is an isomorphism
Vn € Z

Example 1.8. 1. An isomorphism is clearly a quasi-isomorphism

2. The converse is not true. A typical counterexample comes from the fol-
lowing morphism in Ch(Z-mod)

Co=0—>C1=Z — Co=2Z ——C_1 =0

! |

D2:04>D1:0*>DQ:Z/2Z*>D_1:0



Here the map Cy — Dy is just the usual quotient. One easily shows that
this defines a quasi-isomorphism.

Having defined homology, the next natural step is to define cohomology.

Definition 1.9. A cochain complex in A is a family of objects {C"},cz with
a collection of morphisms d” : C* — C™*! satisfying d"*' o d” = 0 Vn € Z.
One defines cocycles, coboundaries, and cohomology in a dual way to all the
definitions built on chain complexes.

1.2 Ch(A) as an abelian category

It is natural to expect that Ch(A) should have the structure of an abelian
category. To show this let us first define kernels and cokernels appropriately.

Lemma 1.10. In Ch(A), the kernel of fe : Co — Dq is given by the chain com-
plex ker(fo) with differentials induced by the universal properties of the kernels
ker(f,) (this will be elaborated on in the proof)

Proof. Consider f, : Co — Do and the kernels k,, : ker(f,,) — C,,. Consider the
following diagram

dn+1 Okn+1

Cy

Ilen41

ker(fni1) -==- > ker(fn) f

!

Dy,

where the bottom arrow is simply defined by the composition f, o d,,+1 0 kn1,
so as to make the diagram without e, 11 commute. Since

fn o dn+1 o kn+l == 5n+1 o fn+1 o kn+l == 07

we are guaranteed the existence and uniqueness of e, 1 by the universal prop-
erty of kernels. By the diagram, we have k, oe, 11 = d,, 0k,11 50 ke : ker(fo) —
C, defines a morphism. It remains to show it satisfies the universal property of
kernels.

Let let K, € Ch(A) and j, : K, — Cs be such that f, 0 j, = 0. At level n
this gives f, o j, = 0 and thus by the universal property of kernels we have
morphisms u,, : K, — ker(f,) with k, o u, = j,. We just need to show these
define a morphism of chain complexes. We have the diagram



/ In+1 /
K K/

n+1
wzl V
) €nt1 .
Frt ker(fni1) —— ker(fn) In

dn+ 1
Cn—i— 1 Cn

It commutes along the bottom trapezoid and the two triangles. We wish to
show the top trapezoid commutes. We have

dn+1 o jn+1 = dn—i—l o kn-{—l OUpt1 = kn O €n+1 O Un+1

= .]n O dn+1 = kn O Up O gn+1
Since k,, is monic (it is a kernel), we get €,411 0Up 41 = Up O gny1 as required O
Example 1.11. 1. If e : Co — D, is injective (ie ker e = 0) we define

D,/Cy = coker(Cy — D,)

2. In R-mod, ie Cy C D, is a subcomplex, then D, /C,, agrees with the
usual quotient.

The next step in showing that Ch(.A) is an abelian category is to show that it

is additive and that it is Ab. We take as fact the following (it is easily shown):

Remark 1.12. In Ch(A) there is a zero object {0s : Co — D¢ }nez and finite
products {[], Aa,n}nez with differentials

Hda,n : HAa,n — HAa,n—l-

Additionally, each hom set has the structure of an abelian group given by f, +
Je = {fn + gn}nez 0T fo,ge : Co = Dq two morphisms, and inversion similarly
componentwise defined.

Theorem 1.13. The category Ch(A) is an abelian category

Proof. We have already seen that Ch(.A) is additive and Ab. We will show that
that every monic is the ker of its coker. Showing every epic is the coker of its
ker is similar.

Let fo : B¢ — Co be monic. We have a sequence ker(f,) s B, L> C,.
By definition f, 0 te¢ = 0, so we obtain ¢tq = 0. Thus ¢, factors through the 0
map Oy — B,. We also have that the 0 map factors through ¢e, and thus by
uniqueness of kernels we deduce that ker(f,) = 0s. Now in abelian categories,
ker(f) =0 <= f is monic. We deduce that f, is monic Vn € Z. Now let
ge : Co — coker(f,) be the natural morphism and g : De — Ce be a morphism
such that ge o ge is zero. Then this also holds at level n and f,, is the ker of its
coker so we get a diagram



B, EELEN c, —Iy coker(f,)

El | /
! In
D,
and h,, defines a morphism of chain complexes, so that f, satisfies the universal

property of ker(coker(f,)) as required. O

1.3 Double complexes

The following objects will be of use when studying spectral sequences.

Definition 1.14. A double complex in A is a family {C} ¢} q)ez2 of objects
in A with maps d’;yq :Cpq = Cpo1qgand dy  : Cp g — Cp g1 satisfying

i) d"od" =0
ii) d”od” =0
iii) d*odh +d"od’ =0

Note that by the last condition, the squares in the following diagram usually

don’t commute
< Cp—17q+1 édh Op7q+1 édh Cp+17q+1 <
| | |
< Cpfl,q a" Cp,q 4" Cp+1,q <

B B B

< Op—lyq—l — Cp,q—l ¢ 4" Cp+1,q—1 ¢

| | |

We say the double complex is bounded if it only has finitely many non-zero
objects

Remark 1.15. Although we usually write chain complexes from left to right,
we have noted them from right to left here to label a double complex with Z?2
in the obvious way

Remark 1.16. Although a double chain complex generally is not a chain com-
plex of chain complexes, we would like to identify it with one. An object of the
category Ch(Ch(A)) is a complex = Cq ¢ = Co g—1 —. Given a double complex
as above, define maps f, , = (—1)Pd, ,: these define chain morphisms between
the horizontal complexes, and it is easy to see that it defines an object of the
category Ch(Ch(A)).



One can build a chain complex from a double complex by ”collapsing along the
diagonal” in two different ways

Definition 1.17. Given a double complex C, ,, its total complexes are the
collections of objects

Trl:[: H Cp.qs TS): @ Chyq

p+q=n p+g=n
Note this may not exist if C, o is not bounded

We have not yet defined a chain complex as we need to specify differentials. We
basically do this componentwise and apply the appropriate universal properties.
Note that from a component C,, ., there are two maps to objects of lower degree,
d" and d".

Proposition 1.18. T.H and TS

e

plexes with differentials d™ + dV

when they exist, naturally form chain com-

Proof. We show how to properly construct these differentials for T.H, the proof
for T® is analogous (but using coproduct properties instead).
Let n € Z. For each pair (p,q) € Z* with p + ¢ = n, we have a projection map

Tpa : T = Gy q. Composing with d” , and d,, gives us maps
Jho . v
dp’q 2T, — Cpfl)q, dp’q 2T, — Cp7q,1

By the universal property of the product we thus get maps d”,d% : T,, — T,,_1.
We define the differential 9, : T, — T},_1 by 9, = d" + d¥ (addition taken in
Homy(T,,,T,—1)). To check that this defines a chain complex, we have (since

composition is bilinear in Ab categories)
On—100y =dy_yody +dy_yody +dy_yody +dy_yod,

One quickly verifies that d"_; od" is induced (through the universal property of
the product) by the family {d?_, -odl ompq}ptg=n, that df_, ody is induced
by {dS, 1 ©d}, © Tpgtprqen, and that d%_; od +dl_ | ody is induced by
{(dy_y  odh +dy, odl,)omyq}tptq=n. Since all of these are families of 0
objects by the definition of a double complex, we deduce that 9,,_1 0 9,, = 0 as
required. O



