
Homological Algebra Seminar Week 3

Mathis Duguin after the talk of Fabien Donnet-Monay and Zichun Zhou

1 Chapter 1: Chain Complexes

We present below the formalism of chain complexes in a general abelian category,
similar to the usual theory of chain complexes for R-modules. We fix throughout
an abelian category A.

Definition 1.1. A chain complex C• in A is a family of objects {Cn}n∈Z
equipped with morphisms dn : Cn → Cn−1 (called differentials) such that
dn ◦ dn+1 = 0 ∀n ∈ Z.
We define the n-cycles and n-boundaries respectively by Zn(C•) = ker(dn),
Bn(C•) = im(dn+1).

By abuse of notation we will often write the dn in the above definition as d, so
that the condition dn ◦ dn+1 = 0 becomes d2 = 0.

Definition 1.2. We say C• is bounded above if ∃N ∈ Z such that Cn = 0
∀n > N . One similarly defines boundedness below. If C• is bounded below by
a and above by b, we say it has amplitude in [a, b]

Definition 1.3. A morphism of chain complexes u• : C•, D• is a collection of
morphisms {un : Cn → Dn}n∈Z satisfying appropriate compatibility conditions,
namely such that the following diagram commutes ∀n ∈ Z

Cn Cn−1

Dn Dn−1

dn

un un−1

δn

here we have noted the differentials of C• by d, and those of D• by δ.

One can easily verify that this defines a category of chain complexes over A,
which we denote by Ch(A).

1.1 Homology

Having defined chain complexes, the next natural step is to define the most
important operation on these: homology functors.
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Given a chain complex C• with differentials d, note that dn+1 : Cn+1 → Cn

factors as Cn+1
e−→ im(dn+1)

m−→ Cn for e,m epi and monic respectively. We
thus obtain

0 = dn ◦ dn+1 = dn ◦m ◦ e =⇒ dn ◦m = 0

By the universal property of kernels, m thus factors through ker(dn).

Definition 1.4. Let C• ∈ Ch(A). The n-th homology of C• is

Hn(C•) = coker(im(dn+1) → ker(dn))

with the implicit morphism a factor of m as above.

Remark 1.5. Hn(C•) = 0 iff C is exact at n (this is easy for R-modules, and
one can then use Freyd-Mitchell).

We have yet to show that homology defines a collection of functors.

Proposition 1.6. Hn : Ch(A) → A is a functor

Proof. Consider a morphism u• : C• → D•. Denote by d, δ the differentials of
C•, D• respectively. Let ιn denote the natural morphisms ιn : ker(dn) → Dn

∀n ∈ Z. Now we have ∀n ∈ Z, δn ◦ un ◦ ιn = un−1 ◦ dn ◦ ιn = 0 so by the
universal property of kernels we get a diagram

ker(dn) ker(δn)

Hn(C•) Hn(D•)

In R-mod, the top map is un|ker(dn) and the diagram can be completed with
a unique induced morphism θn : Hn(C•) → Hn(D•) down below making the
diagram commute. By Freyd-Mitchell we obtain such a morphism in the general
case. If we thus define Hn(C•) on morphisms by Hn(u•) = θn, it is then easy
to verify functoriality by the uniqueness property of θn.

Since we will usually be interested in maps preserving homology, it is worth
defining a new notion of isomorphism.

Definition 1.7. A quasi-isomorphism of chain complexes over A is a morphism
of chain complexes over A, u• : C• → D•, such that Hn(u•) is an isomorphism
∀n ∈ Z

Example 1.8. 1. An isomorphism is clearly a quasi-isomorphism

2. The converse is not true. A typical counterexample comes from the fol-
lowing morphism in Ch(Z-mod)

C2 = 0 C1 = Z C0 = Z C−1 = 0

D2 = 0 D1 = 0 D0 = Z/2Z D−1 = 0

2



Here the map C0 → D0 is just the usual quotient. One easily shows that
this defines a quasi-isomorphism.

Having defined homology, the next natural step is to define cohomology.

Definition 1.9. A cochain complex in A is a family of objects {Cn}n∈Z with
a collection of morphisms dn : Cn → Cn+1 satisfying dn+1 ◦ dn = 0 ∀n ∈ Z.
One defines cocycles, coboundaries, and cohomology in a dual way to all the
definitions built on chain complexes.

1.2 Ch(A) as an abelian category

It is natural to expect that Ch(A) should have the structure of an abelian
category. To show this let us first define kernels and cokernels appropriately.

Lemma 1.10. In Ch(A), the kernel of f• : C• → D• is given by the chain com-
plex ker(f•) with differentials induced by the universal properties of the kernels
ker(fn) (this will be elaborated on in the proof)

Proof. Consider f• : C• → D• and the kernels kn : ker(fn) → Cn. Consider the
following diagram

Cn

ker(fn+1) ker(fn)

Dn

fn

dn+1◦kn+1

∃!en+1

0

where the bottom arrow is simply defined by the composition fn ◦ dn+1 ◦ kn+1,
so as to make the diagram without en+1 commute. Since

fn ◦ dn+1 ◦ kn+1 = δn+1 ◦ fn+1 ◦ kn+1 = 0,

we are guaranteed the existence and uniqueness of en+1 by the universal prop-
erty of kernels. By the diagram, we have kn ◦en+1 = dn ◦kn+1 so k• : ker(f•) →
C• defines a morphism. It remains to show it satisfies the universal property of
kernels.
Let let K ′

• ∈ Ch(A) and j• : K ′
• → C• be such that f• ◦ j• = 0. At level n

this gives fn ◦ jn = 0 and thus by the universal property of kernels we have
morphisms un : K ′

n → ker(fn) with kn ◦ un = jn. We just need to show these
define a morphism of chain complexes. We have the diagram
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K ′
n+1 K ′

n

ker(fn+1) ker(fn)

Cn+1 Cn

un+1

jn+1

gn+1

un

jn
en+1

kn+1 kn

dn+1

It commutes along the bottom trapezoid and the two triangles. We wish to
show the top trapezoid commutes. We have

dn+1 ◦ jn+1 = dn+1 ◦ kn+1 ◦ un+1 = kn ◦ en+1 ◦ un+1

= jn ◦ gn+1 = kn ◦ un ◦ gn+1

Since kn is monic (it is a kernel), we get en+1 ◦un+1 = un ◦gn+1 as required

Example 1.11. 1. If ι• : C• → D• is injective (ie ker ι• = 0) we define

D•/C• = coker(C• → D•)

2. In R-mod, ie C• ⊂ D• is a subcomplex, then Dn/Cn agrees with the
usual quotient.

The next step in showing that Ch(A) is an abelian category is to show that it
is additive and that it is Ab. We take as fact the following (it is easily shown):

Remark 1.12. In Ch(A) there is a zero object {0• : C• → D•}n∈Z and finite
products {

∏
α Aα,n}n∈Z with differentials∏

α

dα,n :
∏
α

Aα,n →
∏
α

Aα,n−1.

Additionally, each hom set has the structure of an abelian group given by f• +
g• = {fn + gn}n∈Z for f•, g• : C• → D• two morphisms, and inversion similarly
componentwise defined.

Theorem 1.13. The category Ch(A) is an abelian category

Proof. We have already seen that Ch(A) is additive and Ab. We will show that
that every monic is the ker of its coker. Showing every epic is the coker of its
ker is similar.

Let f• : B• → C• be monic. We have a sequence ker(f•)
ι•−→ B•

f•−→ C•.
By definition f• ◦ ι• = 0, so we obtain ι• = 0. Thus ι• factors through the 0
map 0• → B•. We also have that the 0 map factors through ι•, and thus by
uniqueness of kernels we deduce that ker(f•) = 0•. Now in abelian categories,
ker(f) = 0 ⇐⇒ f is monic. We deduce that fn is monic ∀n ∈ Z. Now let
q• : C• → coker(f•) be the natural morphism and g• : D• → C• be a morphism
such that q• ◦ g• is zero. Then this also holds at level n and fn is the ker of its
coker so we get a diagram
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Bn Cn coker(fn)

Dn

fn qn

gn
∃hn

and hn defines a morphism of chain complexes, so that f• satisfies the universal
property of ker(coker(f•)) as required.

1.3 Double complexes

The following objects will be of use when studying spectral sequences.

Definition 1.14. A double complex in A is a family {Cp,q}(p,q)∈Z2 of objects

in A with maps dhp,q : Cp,q → Cp−1,q and dvp,q : Cp,q → Cp,q−1 satisfying

i) dh ◦ dh = 0

ii) dv ◦ dv = 0

iii) dv ◦ dh + dh ◦ dv = 0

Note that by the last condition, the squares in the following diagram usually
don’t commute

Cp−1,q+1 Cp,q+1 Cp+1,q+1

Cp−1,q Cp,q Cp+1,q

Cp−1,q−1 Cp,q−1 Cp+1,q−1

dv dv

dh

dv

dh

dv dv

dh

dv

dh

dh dh

We say the double complex is bounded if it only has finitely many non-zero
objects

Remark 1.15. Although we usually write chain complexes from left to right,
we have noted them from right to left here to label a double complex with Z2

in the obvious way

Remark 1.16. Although a double chain complex generally is not a chain com-
plex of chain complexes, we would like to identify it with one. An object of the
category Ch(Ch(A)) is a complex → C•,q → C•,q−1 →. Given a double complex
as above, define maps fp,q = (−1)pdvp,q: these define chain morphisms between
the horizontal complexes, and it is easy to see that it defines an object of the
category Ch(Ch(A)).
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One can build a chain complex from a double complex by ”collapsing along the
diagonal” in two different ways

Definition 1.17. Given a double complex C•,•, its total complexes are the
collections of objects

T
∏
n =

∏
p+q=n

Cp,q, T⊕
n =

⊕
p+q=n

Cp,q

Note this may not exist if C•,• is not bounded

We have not yet defined a chain complex as we need to specify differentials. We
basically do this componentwise and apply the appropriate universal properties.
Note that from a component Cp,q, there are two maps to objects of lower degree,
dh and dv.

Proposition 1.18. T
∏
• and T⊕

• , when they exist, naturally form chain com-
plexes with differentials dh + dv

Proof. We show how to properly construct these differentials for T
∏
• , the proof

for T⊕
• is analogous (but using coproduct properties instead).

Let n ∈ Z. For each pair (p, q) ∈ Z2 with p+ q = n, we have a projection map

πp,q : T
∏
n → Cp,q. Composing with dhp,q and dvp,q gives us maps

d̃hp,q : Tn → Cp−1,q, d̃vp,q : Tn → Cp,q−1

By the universal property of the product we thus get maps dhn, d
v
n : Tn → Tn−1.

We define the differential ∂n : Tn → Tn−1 by ∂n = dhn + dvn (addition taken in
HomA(Tn, Tn−1)). To check that this defines a chain complex, we have (since
composition is bilinear in Ab categories)

∂n−1 ◦ ∂n = dhn−1 ◦ dhn + dvn−1 ◦ dhn + dhn−1 ◦ dvn + dvn−1 ◦ dvn

One quickly verifies that dhn−1 ◦dhn is induced (through the universal property of
the product) by the family {dhp−1,q ◦ dhp,q ◦ πp,q}p+q=n, that d

v
n−1 ◦ dvn is induced

by {dvp,q−1 ◦ dvp,q ◦ πp,q}p+q=n, and that dvn−1 ◦ dhn + dhn−1 ◦ dvn is induced by

{(dvp−1,q ◦ dhp,q + dhp,q−1 ◦ dvp,q) ◦ πp,q}p+q=n. Since all of these are families of 0
objects by the definition of a double complex, we deduce that ∂n−1 ◦ ∂n = 0 as
required.
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